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Background. Epidemiologic studies suggest that diabetes is associated with an increased risk 

of cancer. Concurrently, clinical trials have shown that metformin, which is a first-line 

antidiabetic drug, displays anticancer activity. The underlying mechanisms for these effects 

are, however, still not well recognized. 

Methods. Methods based on atomic force microscopy (AFM) were used to directly evaluate 

the influence of metformin on the nanomechanical and adhesive properties of endothelial and 

cancer cells in chronic hyperglycemia. AFM single-cell force spectroscopy (SCFS) was used 

to measure the total adhesion force and the work of detachment between EA.hy926 

endothelial cells and A549 lung carcinoma cells. Nanoindentation with a spherical AFM 

probe provided information about the nanomechanical properties of cells, particularly the 

length and grafting density of the glycocalyx layer. Fluorescence imaging was used for 

glycocalyx visualization and monitoring of E-selectin and ICAM-1 expression. 

Results. SCFS demonstrated that metformin attenuates adhesive interactions between 

EA.hy926 endothelial cells and A549 lung carcinoma cells in chronic hyperglycemia. 

Nanoindentation experiments, confirmed by confocal microscopy imaging, revealed 

metformin-induced recovery of endothelial glycocalyx length and density. The recovery of 

endothelial glycocalyx was correlated with a decrease in the surface expression of E-selectin 

and ICAM-1. 

Conclusion. Our results identify metformin-induced endothelial glycocalyx restoration as a 

key factor responsible for the attenuation of adhesion between EA.hy926 endothelial cells and 

A549 lung carcinoma cells. 
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General significance 

Metformin-induced glycocalyx restoration and the resulting attenuation of adhesive 

interactions between the endothelium and cancer cells may account for the antimetastatic 

properties of this drug. 

Keywords: nanoindentation, AFM, single-cell force spectroscopy, cancer cells, endothelial 

cells, glycocalyx, metformin 

Abbreviations: AFM – atomic force microscopy, EC – endothelial cell, SCFS – single-cell 

force spectroscopy, T2D – type 2 diabetes  
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Background 

Metformin is a first-line antidiabetic drug that decreases blood glucose concentration 

and improves insulin sensitivity. Although the mechanism of its activity is still not well 

recognized,1 its predominant effect on glucose metabolism is mostly attributed to direct 

inhibition of mitochondrial respiratory complex I in hepatocytes, suppression of 

gluconeogenesis and augmentation of glycolysis. A metformin-induced drop in the ATP/AMP 

ratio may also activate AMPK, eventually disrupting gluconeogenesis and lipogenesis gene 

expression.2 Experimental studies have shown that metformin, beyond its primary action, 

exerts a protective effect on endothelial cells (ECs) and the cardiovascular system. It prevents 

EC apoptosis3 and premature senescence,4 enhances activation of endothelial nitric oxide 

synthase (eNOS)5,6 and attenuates overexpression of adhesion molecules on ECs.6 Metformin 

reduces infarct size7 and counteracts endoplasmic reticulum stress, oxidative stress and 

vasorelaxation impairment.5 It is suggested that these effects can also be achieved 

independently of glucose and lipid metabolism.5 Moreover, treatment of rodents with 

metformin was shown to extend their lifespan,8,9 but there are also studies contradicting these 

findings.10,11 The clinical data demonstrate beneficial effects of metformin in patients with 

type 2 diabetes (T2D), as it lowers the risk of all-cause mortality.12,13 However, its impact on 

the risk of cardiovascular diseases remains uncertain, especially in nondiabetic patients.1,14 

Clinical trials documented that T2D is associated with an increased risk of cancer 

development and worse disease outcome.15,16 Hyperglycemia boosts cancer cell metabolism 

and promotes their proliferation, invasiveness and metastasis.17 Moreover, hyperinsulinemia 

may contribute to cancer progression through insulin receptor and insulin-like growth factor 

signaling.16 Long-term clinical studies indicate that metformin may exert anticancer 

properties. It was shown to reduce the risk of cancer and decrease cancer mortality in patients 

with T2D.18–21 The detailed mechanisms are not entirely clear, however. Molecularly, the 
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anticancer activity of metformin can be related to both AMPK-dependent and AMPK-

independent effects, including mainly mTOR and IGF-1 signaling inhibition (broadly 

reviewed by Pernicova & Korbonits22). Furthermore, metformin exerts anti-angiogenic 

properties, which may also contribute to the reduction of tumor growth.23 In our study, we 

focused on the antimetastatic potential of metformin, the mechanism of which has been 

poorly understood thus far. 

Cancer metastasis is a multiphase process, with a crucial step of crossing the 

endothelial barrier by the cancer cell, involving direct interactions of the cancer cell and the 

endothelium.24 Such cell-to-cell interactions, similar to leukocyte-endothelial interactions, are 

regulated by the glycocalyx, a protective polysaccharide layer forming a physical and 

functional barrier, found on the apical part of the endothelium.25 In hyperglycemic conditions, 

the endothelial glycocalyx layer is reduced,26 which may facilitate the adhesion of circulating 

cells to the activated endothelium.27 In accordance, our recent study shows that short-term 

hyperglycemia induces changes in both the mechanical and structural properties of the 

endothelial glycocalyx, which in turn modulates the adhesion of cancer cells to the 

endothelium.28 

Atomic force microscopy (AFM) is a useful tool for studying the nanomechanical and 

adhesive properties of cells due to its ability to control interactions between two objects 

within a range of nanonewton (nN) forces. Using single-cell force spectroscopy, it is possible 

to investigate adhesive interactions between single cells directly.29,30 Moreover, the AFM 

nanoindentation method enables the measurement of the length and density of the glycocalyx 

layer as well as the elastic properties of the cell body. In this work, we used AFM methods to 

verify whether metformin can attenuate the adhesion of cancer cells to the endothelium and, if 

so, whether it can be achieved by regulating endothelial glycocalyx properties. 
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Methods 

Cell culture. Human lung carcinoma A549 (ATCC, UK) cells were cultured in F-12K 

medium (Cat. No. 30-2004, ATCC) supplemented with 10% fetal bovine serum (FBS, Cat. 

No. 10082-147, Invitrogen). EA.hy926 (ATCC), immortalized human umbilical vein 

endothelial cells, were grown in Dulbecco's modified Eagle's medium with 25 mM glucose 

(high glucose, HG) (Cat. No. 30-2002, ATCC), 10% FBS (Cat. No. 10082-147, Invitrogen) 

and 2% HAT supplement (Cat. No. 21060-017, Invitrogen). The cells were maintained in 

standard conditions at 37°C, 5% CO2, and 95% humidity. 

Experimental scheme. EA.hy926 cells were seeded in DMEM HG supplemented with 10% 

FBS and 2% HAT at a density of 104 cells/mL on sticky-slides I 0.6 (Cat. No. 80188, IBIDI) 

covered with fibronectin and were kept in static conditions for 24 h to allow their attachment. 

After this time, slides were inserted into the fluidic unit (IBIDI pump system for simulation of 

blood vessels), and the cells were subjected to a laminar shear stress of 20 dyn/cm2 for 48 h 

(Fig. S1A-C). To prepare A549 cells for the AFM measurements, the cells were plated in F-

12K medium supplemented with 10% FBS and 25 mM glucose. Both cell lines were treated 

with metformin either for 72 h (short-term) or additionally pretreated for 12 days (long-term) 

(Fig. S1D). Heparinase (1000 U/mL, Sigma) was added to the cells for the last 30 min of 

incubation with metformin (short-term experimental scheme). 

AFM study of the nanomechanics and cell-to-cell adhesion. All AFM measurements were 

performed using a NanoWizard 3 NanoScience AFM commercial instrument (JPK 

Instruments, Germany). The nanoindentation measurements with a spherical (colloidal) probe 

(Novascan, USA) were used to detect the endothelial glycocalyx and determine the apparent 

elastic modulus of ECs (Fig. S2A). We used a sphere probe with a diameter of 4.5 µm 

attached to the cantilever with a spring constant of 0.02 N/m. Force–distance curves were 
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obtained with an indentation velocity of 0.7 µm/s and a maximal force of 1 nN. The 

measurements were performed on living cells in Hanks’ Balanced Salt Solution (H8264, 

Sigma-Aldrich) supplemented with 25 mM glucose and 1% FBS, with or without 10 µM 

metformin. Experiments were conducted on the top of ECs (central part; deformation of the 

cell  up to 10% of the cell height was applied to avoid the potential influence of the 

underlying nucleus).  

To determine glycocalyx parameters as well as the elastic modulus, we used 

a procedure proposed by Sokolov et al.31 (Fig. S2B). In the Sokolov’s model, it is assumed 

that the surface of the cell is not homogenous, and it consists of an inner elastic body  covered 

with the outer cellular brush. Such a brush model implies that a well-defined spherical AFM 

probe at first indents the cellular brush (squeezes the brush), and next the probe indents the 

cell body. Therefore,  non-linear deformation of the brush could be analyzed by a fit based on 

the Alexander-de Gennes’ theory of polymer brushes.31,32 Following the procedure described 

in our recent paper,28 initially the Hertz model was fitted to the part of the curve close to the 

maximal force load (blue curve), for which the glycocalyx is assumed to be almost squeezed. 

Next, the brush model was fitted to the F(h) curve (Fig. S2B inset) to calculate the length and 

grafting density of the glycocalyx layer. The grey area shows a range of fit (Fig. S2B inset). 

Additionally, the assumption of total squeezing of the glycocalyx layer has been verified 

experimentally by measuring the dependence of the elastic modulus on the applied load (see 

Fig. S2C in Supplementary Information). For load forces higher than 0.8 nN, the saturation of 

the elastic modulus dependence on the applied force was observed. 

Single-cell force spectroscopy (SCFS) study was conducted to evaluate the 

interactions between the A549-EA.hy926 system (see Supplementary Information Fig. S3A). 

Adhesive measurements were carried out using a V-shaped cantilever with a spring constant 

of 0.01 N/m (MLCT O-10, Bruker). The methodology of SCFS measurements was described 
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in detail in our previous work.28 In brief, tipless cantilevers were covered with 50 µg/mL 

fibronectin (Sigma-Aldrich) and were stored in PBS. To immobilize a single cancer cell on 

the cantilever, a functionalized cantilever was brought into contact for 30 s with a loosely 

bound cell. Next, a cantilever with a single cancer cell was immediately taken for 

measurements. The adhesive interactions between A549 and EA.hy926 cells were measured 

in Hanks’ Balanced Salt Solution (H8264, Sigma-Aldrich) supplemented with 25 mM glucose 

and 1% FBS, with or without 10 µM metformin. Experiments were conducted on the central 

part of the cell. Figure S3B presents an exemplary graph of a typical force-distance F(Z) 

curve obtained during the adhesive study. Measurement began when the cantilever with 

attached living cancer was separated from ECs, and it approached the monolayer of EA.hy926 

cells at 1.9 µm/s until a preset contact force of 1.4 nN was reached (grey curve). After a 

defined contact time of 2 s, the cantilever was retracted at a velocity of 1.9 µm/s (black 

curve). The contact time and contact force were controlled experimentally (see 

Supplementary Information Fig. S3C and S3D). It proceeded as follows: at first, the adhesion 

force was measured as a function of the contact time or the contact force. Next, based on these 

measurements, the values of contact time and contact force  were chosen from the range, for 

which the adhesion force did not change significantly. The total adhesion force (Fd) and work 

of detachment (Wd) were extracted from the retraction curve using the JPK data processing 

software. The total adhesion force Fd was described as the maximal force required to detach 

A549 cells from EA.hy926 cells and was calculated as the outermost point on the adhesive 

curve. It should be noted that the Fd parameter  characterizes only the net adhesive 

interactions between two cells, without discrimination of specific and non-specific 

interactions. The work of detachment is presented as the area between the contour of the 

retraction curve and the baseline. We defined the rupture events as unbinding events 

occurring for a small cell-cell separation distance, which are associated with the breakage of 
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bonds involving surface molecules. The number of rupture events means the number of 

unbinding events detected per single curve. 

AFM imaging. The AFM imaging was performed using V-shaped gold-coated cantilevers 

(MLCT, Veeco Probes, Camarillo, CA, USA) with a nominal spring constant of 0.01 N/m. 

All experiments were performed with nonfixed cells in Hanks’ Balanced Salt Solution 

(H8264, Sigma-Aldrich) supplemented with 25 mM glucose and 1% FBS. Images (256x256 

pixels) were obtained at a scan size of 60x60 μm2 at a scan rate of 0.4 Hz. Between 10 and 15 

images of cells were obtained for each sample. 

Phalloidin staining. For each fluorescence experiment, ECs were grown on 24-well plates 

and stimulated with 10 μM metformin for 72 h or 360 h. Before staining, the culture medium 

was removed from wells, the cells were rinsed with warm PBS and then were fixed with 3.6% 

formaldehyde (Sigma) for 10 min at room temperature. Next, the cells were rinsed three times 

with warm buffer and permeabilized with 0.1% Triton X (Invitrogen-Thermo Fisher) for 4 

min, followed by blocking in PBS containing 1% BSA (Invitrogen-Thermo Fisher) for 30 

min. Again, the cells were rinsed with PBS and incubated with phalloidin conjugated with 

Alexa Fluor 488 dye (1:8000, Molecular Probes) for 20 min. Before the measurement, the 

cells were rinsed twice with PBS. Fluorescence images were obtained using an Olympus IX71 

with a 20x air objective and were recorded and processed with Olympus CellSense software. 

Samples were excited with an Olympus X-Cite Q120 lamp and filtered by an Olympus U-

MWIB2 filter. 

Cell viability assay. Cell viability was evaluated by Trypan blue (Life Technologies). In the 

beginning, ECs were trypsinized, and Trypan blue (0.2%) was added to the cell suspension (at 

a ratio of 1:5). The prepared suspension of cells was placed on a glass slide, covered with 

a glass coverslip, and incubated for 3 min at RT. After this time, the set of images was 
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performed using an optical microscope (Olympus IX71) equipped with Olympus CellSense 

software (version 1.41). The viable and dead cells were counted. Cell viability is presented as 

the percentage of viable cells in the population of cells. 

Expression of E-selectin and ICAM-1. EA.hy926 cells were cultured on 24-well black 

plates. Cells were fixed with methanol for 5 min at -10°C. Next, they were gently rinsed with 

PBS and incubated with blocking peptide solution (sc-516214, Santa Cruz Biotechnology) for 

30 min. After this time, they were washed three times with PBS. For E-selectin staining, the 

cells were incubated with E-Selectin antibody (10 µg/mL, sc-137054, Santa Cruz 

Biotechnology) conjugated with Alexa Fluor 488 for 12 h. Nuclei were counterstained with 

Hoechst (Thermo Fisher). For ICAM-1 staining, cells were incubated with anti-ICAM-1 

antibody conjugated with Alexa Fluor 488 (5 µg/mL, Santa Cruz Biotechnology) for 1 h, 

followed by nuclear staining with Hoechst (Thermo Fisher). The fluorescence intensity was 

measured using a fluorescence Microplate Reader (Infinite M200 PRO, Tecan). 

Glycocalyx visualization. The cells were grown on 24-well plates and stimulated with 10 µM 

metformin for 72 h and 360 h. After the appropriate time, cells were fixed with 

paraformaldehyde (3.8%, Sigma) for 10 min. Next, cells were gently rinsed in PBS three 

times and incubated with blocking peptide solution (Santa Cruz Biotechnology) for 30 min. 

After this time, they were washed three times in PBS and incubated with biotinylated wheat 

germ agglutinin (WGA, Vector Laboratories) or Maackia amurensis lectin II (MAL II, Vector 

Laboratories) for 30 min. Next, cells were washed three times and incubated with avidin 

conjugated with Alexa Fluor 546. Cell nuclei were stained with Hoechst (Thermo Fisher). 

Images were taken using a Zeiss LSM710 confocal microscope and the original software by 

Zeiss. 
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Statistical analysis. The AFM nanoindentation and SCFS, as well as the fluorescence 

intensity data are presented in the form of box plots [the box represents the standard deviation 

(SD) and whiskers represent the range of the 5th to 95th percentile]. Statistical significance 

was tested using two-way ANOVA (p<0.05), with independent variables being the time of 

incubation and a sample type, i.e., control (ctr) or metformin (met). ANOVA was followed by 

Tukey’s multiple comparison tests. Since the AFM data were log-normally distributed, we 

performed data transformation using a natural logarithm, in order to use the ANOVA 

statistical test (see Fig. S4 in Supplementary Information). This analysis was applied to all 

AFM data. The means (blue line in all scatter plots) of the logarithmically transformed data 

were then back-transformed using the procedure described by Limpert et al.33 In the 

manuscript, all data was shown as a non-transformed raw data in order to show the real spread 

of data points as well as the skewness of the distributions. 

Results 

Metformin attenuates cancer cell-endothelium adhesive interactions. EA.hy926 

immortalized endothelial cells were selected as an experimental model because, in contrast to 

primary endothelial cells,34,35 they tolerate continuous culture in hyperglycemic conditions 

(25 mM) well. In our previous paper, we have shown that the sustained growth of EA.hy926 

cells in high glucose (HG) concentrations causes a gradual increase in their stiffness.36 

Therefore, the study was carried out on the cells presenting stable elastic modulus values and 

nanomechanical properties (between 57 and 72 days of culture in HG) (Fig. 1A, S1D). 

A nontoxic concentration of metformin (10 µM) was selected for the subsequent experiments 

(Fig. 1B). No cytotoxic effect at  this concentration was also observed for A549 cells. The 

effect of metformin was checked in two experimental settings. For the short-term studies, 

EA.hy926 cells were exposed to metformin for 72 h, of which 24 h were under static 

conditions to allow their attachment after plating and another 48 h were in laminar flow, 
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followed by AFM measurements and other analyses, while for the long-term effects, the cells 

were additionally pretreated with metformin for 12 days. A549 cells were exposed to 

metformin in HG medium for 72 h or 15 days in static conditions.  

 

Fig. 1. Specification of the experimental model. (A) Time-dependent changes in the elastic modulus 

of endothelial cells growing in HG conditions. Arrows mark the time-points selected for experiments, 

for which stable values of the elastic modulus were observed. n=3 experiments, N=15 cells. (B) 

Viability assay performed for different concentrations of metformin in HG concentration. n=2 

experiments, N=40 cells. One-way ANOVA followed by Tukey’s posttest, 
*
p<0.05, 

**
p<0.01. Ctr – 

vehicle. 

We observed that the longer the time of EA.hy926 cell culture in HG conditions, the 

stronger are the adhesion interactions between cancer cells and the endothelium (Fig. 2), as 

indicated by the increased total adhesion force (Fig. 2A), work of detachment (Fig. 2B) and 

the frequency of rupture force events (Fig. 2C). Both short- and long-term treatment of ECs 

and A549 cells with metformin caused a decrease in all inspected parameters (Fig. 2A-C). 

The total adhesion force, the work of detachment and the frequency of rupture force remained 

significantly increased in the group treated with metformin cultured for a longer time in HG 

in comparison to short-time incubation (Fig. 2). These results show that metformin can 

counteract adhesive interactions between ECs and cancer cells in hyperglycemic conditions. 

Moreover, the force and work needed for cancer cell and endothelial cell detachment are 

higher for the cells incubated longer in HG conditions, regardless of metformin treatment. 
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Fig. 2. Metformin attenuates the adhesive interactions between cancer cells and the endothelium. 

(A) Total adhesion force n=2 experiments, N=8 cells, (B) work of detachment n=2 experiments, N=8 

cells and (C) frequency of rupture events n=2 experiments, N=8 cells. The numbers in brackets 

indicate the total number of curves taken into analysis. Two-way ANOVA followed by Tukey’s 

posttest, 
*
p<0.05, 

**
p<0.01, 

***
p<0.001. (ns) nonsignificant. Ctr – vehicle. EA.hy926 and A549 cells 

were cultured in HG conditions with or without 10 µM metformin. 

Metformin facilitates endothelial glycocalyx barrier regeneration. Our previous studies 

demonstrated that culture of ECs and cancer cells in prolonged hyperglycemic conditions 

causes gradual reduction of the glycocalyx layer.28 As depicted in Figure 3, the treatment of 

cells with metformin restored the glycocalyx parameters in comparison to control cells. 

Grafting density of the glycocalyx layer, but not its length, significantly increased in response 

to short-term exposure of ECs to metformin (Fig. 3A, B). Long-term treatment of ECs with 

metformin improved both the grafting density of the glycocalyx layer and the length of the 

glycocalyx brush (Fig. 3A, B). These results were fully corroborated by fluorescent imaging. 

Staining of ECs with wheat germ agglutinin (WGA), binding sialic acid and N-

acetylglucosaminyl residues, which are present on ECs,37 revealed that both short- and long-

term incubation of ECs with metformin increased these glycocalyx components (Fig. 3C-F, 

K). Additionally, binding of Maackia amurensis lectin II (MAL II), which recognizes sialic 

acid, was augmented in response to metformin treatment, regardless of the exposure time 

(Fig. 3G-J, L). 
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Fig. 3. Metformin induces glycocalyx restoration. (A) Glycocalyx grafting density, n=4 

experiments, N=14 cells. (B) Length of endothelial glycocalyx layer, n=4 experiments, N=14 cells. 

Representative pictures of endothelial cells stained by WGA lectin (red)/phalloidin (green) (C-F) and 

MAL II lectin (red)/phalloidin (green) (G-J). Quantitative data of (K) WGA, N=30 cells, and (L) 

MAL II, N=36 cells, mean fluorescence intensity. The numbers in brackets indicate the total number 

of curves taken into analysis. Two-way ANOVA followed by Tukey’s posttest. 
*
p<0.05, 

**
p<0.01, 

***
p<0.001. (ns) nonsignificant. Ctr – vehicle. EA.hy926 cells were cultured in HG under flow 

conditions with or without 10 µM metformin . 
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Moreover, firm and clearly visible actin fibres were observed for the cells cultured in HG 

conditions (Fig. 4A, C, E, G), in accordance with the increased cellular stiffness (Fig. 4I), 

which is mainly determined by the structure of the actin cytoskeleton.38 Treatment of ECs 

with metformin reduced the stiffness of the cells and actin polymerization (Fig. 4B, D, F, H, 

I). Thus, we conclude that metformin normalizes the nanomechanical properties of 

endothelial cells and facilitates glycocalyx barrier reconstruction. 

 

Fig. 4. Metformin reduces endothelial cell stiffness and alters actin architecture. (A-D) 

Representative pictures of actin fibres. N=35 cells. (E-H) Representative pictures of AFM images of 

the structure of the actin cytoskeleton in the EC cortex. N=35 cells. (I) Elastic modulus values. n=4 

experiments, N=14 cells. The numbers in brackets indicate the total number of curves taken into 

analysis. Two-way ANOVA followed by Tukey’s posttest. 
*
p<0.05, 

**
p<0.01, 

***
p<0.001. (ns) 

nonsignificant. Ctr – vehicle. EA.hy926 cells were cultured in HG under flow conditions with or 

without 10 µM metformin. 
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Cancer cell glycocalyx is modulated by metformin. In the next step, we checked whether 

metformin affects cancer cell glycocalyx. Glycocalyx grafting density and length were 

slightly decreased and increased, respectively, after 72h-exposure of A549 cells to metformin 

in HG (Fig. 5A,B). In contrast to glycocalyx length, its grafting density was strongly 

increased by prolonged incubation of A549 cells in HG conditions, and no further metformin-

induced changes were observed (Fig. 5A,B). The fluorescent visualization of the glycocalyx 

by WGA and MAL II lectins in A549 cells confirmed that both metformin and long-exposure 

to HG facilitated the coverage of the cell by glycocalyx (Fig. 5C-L). In contrast to endothelial 

cells (Fig. 4I), metformin increased the cancer cell stiffness (Fig. 5M). These data indicate 

that metformin can modulate the glycocalyx barrier and cell elasticity both in endothelial and 

cancer cells.  
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Fig. 5. Metformin affects the glycocalyx in A549 cells. (A) Glycocalyx grafting density (n=2 

experiments, N=9 cells). (B) Length of glycocalyx layer (n=2 experiments, N=9 cells). Representative 

pictures of A549 cells stained by WGA lectin (red)/phalloidin (green) (C-F) and MAL II lectin 

(red)/phalloidin (green) (G-J). Quantitative data of (K) WGA (N=36 cells), and (L) MAL II (N=41 

cells) mean fluorescence intensity. (M) Elastic modulus values. n=2 experiments, N=10 cells. The 

numbers in brackets (A,B) indicate the total number of curves taken into analysis. Two-way ANOVA 

followed by Tukey’s posttest. *p<0.05, **p<0.01. (ns) nonsignificant. Ctr – vehicle. A549 cells were 

cultured in HG conditions with or without 10 µM metformin. 
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The endothelial glycocalyx impairs the adhesive interactions of ECs with cancer cells . To 

assess whether inhibition of EC-cancer interactions by metformin results from its effect on the 

endothelial or tumor cell, we performed  analysis of the total adhesion force, the work of 

detachment, and the frequency of rupture force events between endothelial and cancer cells in 

the experimental setting, where ECs, but not A549 cells, were exposed to metformin. The 

experiments revealed that the pattern of total adhesion force, work of detachment and 

frequency of rapture events between the cancer cell and endothelium (Fig. 6) is similar to that 

seen when both cell types were stimulated with metformin (Fig. 2).  

 

Fig. 6. Metformin attenuates adhesive interactions between the cancer cell and endothelium.   (A) 

Total adhesion force n=3 experiments, N=11 cells, (B) work of detachment n=3 experiments, N=11 

cells and (C) frequency of rupture events n=3 experiments, N=11 cells. Numbers in brackets indicate a 

total number of curves taken into analysis. Two-way ANOVA followed by Tukey’s post-test, *p<0.05, 

**p<0.01, ***p<0.001. (ns) non-significant. Ctr – vehicle. EA.hy926 cells were cultured in HG under 

flow conditions with or without 10 µM metformin. A549 cells were cultured in HG conditions and 

were not exposed to metformin. 

It is plausible, therefore, that metformin-induced attenuation of endothelial-cancer cell 

interactions is rather related to its influence on endothelial cells, but not on cancer cells. 

Consequently, we hypothesized that the inhibitory effects of metformin on the cancer cell-

endothelium adhesive interactions are mediated by endothelial glycocalyx regeneration. To 
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address this question, ECs were treated with heparinase, to selectively shed heparan sulfate 

from the glycocalyx, to counteract the metformin-induced recovery of the glycocalyx. The 

glycocalyx length (Fig. 7A) and grafting density (Fig. 7B) decreased in cells treated with 

heparinase. Both the total adhesion force and work of detachment between endothelial and 

cancer cells, as well as the frequency of rupture force events, were heavily increased in 

response to heparinase treatment in cells cultured in the presence of metformin (Fig. 7C-E). 

 

Fig. 7. Enzymatic degradation of the glycocalyx reverses the effect of metformin on the adhesive 

interactions between cancer cells and the endothelium. (A) Glycocalyx length, n=2 experiments, 

N=10 cells, (B) Glycocalyx grafting density, n=2 experiments, N=10 cells, (C) Total adhesion force, 

n=2 experiments, N=10 cells, (D) Work of detachment, n=2 experiments, N=10 cells. (E) Frequency 

of rupture events, n=2 experiments, N=10 cells. Numbers in brackets indicate the total number of 

curves considered in the analysis. Two-way ANOVA followed by Tukey’s posttest. 
*
p<0.05, 

**
p<0.01, 

***
p<0.001. (ns) nonsignificant. eHep – heparinase, Ctr – vehicle. EA.hy926 cells were cultured in HG 

under flow conditions with or without 10 µM metformin. A549 cells were cultured in HG conditions 

and were not exposed to metformin. 

These results show that metformin-stimulated regeneration of the glycocalyx may be 

responsible for the attenuation of cancer cell-endothelium adhesive interactions. This effect 
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can also be facilitated by the metformin-induced downregulation of surface expression of the 

adhesion molecules ICAM and E-selectin (Fig. 8A, B) on endothelial cells. Both mechanisms 

may contribute to the antimetastatic effect of metformin observed in vivo. 

 

Fig. 8. Surface level of adhesion molecules on endothelial cells (A) E-selectin level, n=6 

experiments. (B) ICAM-1 level, n=6 experiments. Two-way ANOVA followed by Tukey’s posttest. 

*
p<0.05, 

**
p<0.01, 

***
p<0.001. (ns) nonsignificant. EA.hy926 cells were cultured in HG conditions 

with or without 10 µM metformin. 

Discussion 

The significance of metformin as a potential anticancer therapy remains controversial 

because experimental studies are not entirely consistent with population-based analyses.22 

Taking into consideration the pleiotropic activity of metformin and the mechanisms that have 

not been fully understood yet,1 and, on the other hand, promising results of some clinical 

reports,22 further detailed experimental and clinical studies with a mechanistic approach are 

needed to obtain a clear answer regarding the anticancer potential of this drug. In light of data 

showing the antimetastatic properties of metformin, a decreased rate of distant metastasis and 

distant metastasis-free survival in comparison to non-metformin diabetic patients with 

prostate cancer,39 as well as inhibition of metastasis of ovarian tumors and melanoma in mice 

treated with metformin,23,40 we aimed to verify by direct measurement on a single cell level if 
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metformin can inhibit cancer cell-endothelium adhesive interactions. In this study, we report 

that metformin attenuates the adhesion of cancer cells to the endothelium by improving the 

nanomechanical properties of endothelial cells, in particular by restoring the endothelial 

glycocalyx layer in chronic hyperglycemia. Thus, this mechanism may contribute to the 

antimetastatic effects of metformin. 

Glycocalyx tightly covers the cell surface and shields adhesion molecules from 

interactions with other cells.41 Increased exposition of membrane proteins (i.e., adhesive 

molecules) contributes not only to the adhesion of leukocytes but also to cancer cells.42–44 

Injury of this layer on endothelial cells in hyperglycemia was previously reported as a cause 

of endothelial dysfunction development.26,45,46 Prolonged hyperglycemia results in increased 

surface expression of adhesion molecules, adhesive interactions with circulating cells and 

higher endothelial permeability for cells and molecules.47 Accordingly, the reduction of the 

endothelial glycocalyx layer modulates the adhesion of cancer cells to the endothelium.28 As 

we show here, treatment of endothelial cells cultured in hyperglycemic conditions with 

metformin reduces the total adhesion force and the work of detachment for cancer cells, 

which is related to changes occurring on the cell surface, including decreased surface 

expression of E-selectin and ICAM and reconstruction of the glycocalyx layer. As the most 

visible effect was noted for the glycocalyx grafting density, it seems that metformin 

stimulates "de novo" synthesis of glycocalyx molecules in endothelial cells. The structure of 

the glycocalyx and its functionality are restored in response to metformin by increasing the 

content of N-acetylglucosamine (GlcNAc) and sialic acid on the cell surface. The increase in 

GlcNAc content is mainly related to the structural restoration of the glycocalyx layer by 

reconstruction of the GAG chains.48 However, an increase in sialic acid in the glycocalyx may 

influence cell function. Sialic acid is one of the terminal monosaccharides which controls 

vascular permeability.49 In hyperglycemia, sialic acid is shed from the endothelial cell surface 
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into the plasma and is regarded as a predictive biomarker of diabetic complications.50 The 

molecule of sialic acid in physiological conditions is negatively ionized. Therefore, it forms a 

net negative charge on the cell surface, which protects endothelial cells from adhesive 

interactions with circulating cells.51 

The effect of metformin on endothelial glycocalyx was previously studied by Eskens 

et al. in db/db mice.45 The authors have reported that metformin causes partial recovery of 

diabetes-associated disruption of the glycocalyx barrier and therefore regulates endothelial 

permeability,45 which is in accordance with studies performed on pulmonary microvascular 

endothelial cells52 and in mice.44 The literature reports that metformin alleviates endothelial 

dysfunction mainly by increasing NO production, inhibiting inflammatory pathways and 

regulating mitochondrial ROS production.2,3,53 Our data indicate that metformin also 

improves the nanomechanical properties of ECs, which may affect the functionality of ECs, 

as endothelial stiffening is one of the symptoms of endothelial dysfunction and is related to 

the attenuation of NO production.54 In contrast, the reduction of cell stiffness leads to 

improved endothelial function and, consequently, increased or stabilized NO production by 

the endothelium.54 

 

Conclusions 

In conclusion, we showed that metformin has a beneficial impact on endothelial cells 

and reduces the interaction between cancer cells and the endothelium in chronic 

hyperglycemia. Metformin improves endothelial glycocalyx properties, increases its length 

and grafting density and restores sialic acid and GlcNAc components, which, in turn, may 

inhibit the adhesive interactions of endothelial cells with cancer cells. 
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Highlights 

 Atomic force microscope directly probes the impact of metformin on the 

nanomechanical and adhesive properties of endothelial cells in chronic 

hyperglycemia 

 Metformin attenuates adhesion between EA.hy926 endothelial cells and A549 lung 

carcinoma cells in chronic hyperglycemia 

 Metformin-induced glycocalyx restoration is a key factor responsible for the 

attenuation of EA.hy926 and A549  cells adhesion 

 The presented research may explain the antimetastatic properties of metformin 

observed in clinical trials. 
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